LM930 Bluetooth® low energy Module (with IPEX Connector)
Standalone (With Embedded Bluetooth® v4.1 Stack)

Overview

The LM930 Bluetooth® low energy module is designed for use within embedded systems. It is implemented as a peripheral device within a product, while saving the developer valuable PCB space. The LM930 enables wireless communication with nearby Bluetooth® low energy devices (e.g. iOS and Android) using a highly power efficient connection. The transmission output power ranges from 0 dBm to 9 dBm and can be configured to provide an extended battery life or a longer communication range.

This single core standalone module combines a Bluetooth® low energy radio using a Bluetooth® v4.1 stack, plus a microcontroller with 512 kB EEPROM for running the application. The LM930 incorporates 27 pin outs including UART and I²C for interfacing with a wide range of peripheral devices like sensors. It’s SMT side and bottom pads allow for easy manufacture and placement into your product. Application firmware and configuration settings can be preloaded to the module before supply.

LM offer bespoke integration into your product by supporting your developer. We can also assist in the development of new IoT applications for the module. IoT applications such as Serial over GATT, Eddystone™ Beacon and Cloud Sensor & Cloud Collector are available with the module’s LM53X development kits. The firmware is customisable to meet your requirements.

The IPEX connector provides the developer with the flexibility to add an antenna that suits the product’s unique requirements, such as dipole, IC or PCB antenna types. The selected antenna can be placed anywhere on the product, which is useful for avoiding any metallic surfaces of the product housing and a noisy environment of the product’s PCB. Depending on the antenna used a longer range, omnidirectional or unidirectional RF signal is produced.

Features

- Bluetooth® v4.1 specification
- 14 mA Current Consumption (at 0 dBm Tx Output Power)
- IPEX Connector
- 9 dBm Tx Output Power (Max) and -92 dBm Rx Sensitivity
- Over-the-Air Upgrade (OTAU) available
- Application Firmware Support
- IoT Applications available including Serial over GATT, Eddystone™ Beacon and Cloud Sensor & Cloud Collector
- Fully integrated module with no additional components required
- PC and UART
- 9 digital and 3 analogue I/O (10-bit ADC)
- Wake-up interrupt and Watchdog timer
- 4 PWM channels
- 22mm x 10.11mm x 2.50mm
- SMT Side and Bottom Pads for easy production
- See our website for this product's certifications
- RoHS, REACH and WEEE Compliant Solution
General Specification

Wireless
- **Bluetooth® Standard**: v4.1
- **Module Type**: Standalone (Embedded Bluetooth® Stack)
- **Profiles**: GATT-Based

Hardware
- **Chipset**: Qualcomm®
- **Antenna**: IPEX Connector
- **Microcontroller (MCU)**: 16-bit RISC
- **EEPROM Memory**: 512 kB
- **RAM**: 64 kB
- **Programming Interface**: SPI
- **Interfaces**: I²C, UART, AIO and PIO
- **Power Supply**: 3V3 (3V6 Max)
- **Crystal Oscillators**: 32 kHz and 16 MHz
- **Development Kit**: LM53X

RF Characteristics
- **Tx Output Power**: 0 dBm to 9 dBm
- **Rx Sensitivity**: -92 dBm (Typical)
- **Current Consumption (Cont.Tx)**: 14 mA (at 0 dBm), 15.9 mA (at 3 dBm) and <25 mA (at 9 dBm)
- **Current Consumption (Cont.Rx)**: 22 mA (Typical)
- **Range (in open space)**: 110m + (with a 2 dBi antenna)
- **Data Rate**: Up to 1 Mbps
- **Frequency**: 2.4 GHz to 2.485 GHz

Physical Characteristics
- **Operating Temperature**: -30°C to +85°C
- **Dimensions (L x W x H)**: 22mm x 10.11mm x 2.50mm
- **Weight**: 0.88g +/- 0.25g tolerance
- **Certifications**: See our website for this product's certifications
- **Compliance**: RoHS, REACH and WEEE Compliant Solution
IoT Applications

The LM930 standalone module is capable of running your Bluetooth® low energy application. Requiring no external hardware and supports a wide range of applications such as:

- Alert Tag
- Automotive Key Fob
- Beacon
- Blood Pressure Sensor
- Cycling Speed and Cadence Sensor
- Environment Sensor
- Health Thermometer
- Heart Rate Sensor
- Keyboard & Mouse
- Multifunction Steering Wheel
- Security Tag
- Serial Communication
- Time Client
- Temperature and Pressure
- Weight Scale

LM Technologies offer application support, including assisting the developer and creating new applications. LM provide firmware that can be customised to your specification.

Firmware available:

- Cloud Sensor
- Cloud Collector
- Eddystone™ Beacon
- URL Beacon
- iBeacon™
- Serial Server
- Console
- Key Fob (with RGB LED Controller)
Radio Frequency Characteristics

Transmit Power Measurements

Crystal Trim

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Offset ±1KHz</td>
<td>0.75KHz</td>
<td>KHz</td>
</tr>
<tr>
<td>Trim Value</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>

Output Power

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ppk Ppk Pav Pav</td>
<td>7.6 8 8.0 8.4 8.9 9.1</td>
<td>dBm</td>
</tr>
<tr>
<td><Pav +3 dBm -20 dBm< Pave<10dBm</td>
<td>2402MHz (CH0*) Pav Ppk 2442MHz (CH20*) Pav Ppk 2480MHz (CH39*) Pav Ppk</td>
<td></td>
</tr>
</tbody>
</table>

Receive Measurements

Limitation Sensitivity

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BER≤30.8% for receiving power is -70 dBm or better.</td>
<td>-93 -92 -93</td>
<td>dBm</td>
</tr>
</tbody>
</table>

Maximum Input Level

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER≤30.8% for receiving power is -10 dBm or better.</td>
<td>0 0 0</td>
<td>%</td>
</tr>
</tbody>
</table>

Current Consumption Test

Test Condition

(BLE PRBS9 Channel 2442MHz Package Length 37)

Continuous Tx: 14 mA (at 0 dBm), 15.9mA (at 3dBm) and <25 mA (at 9dBm)

Continuous Rx: 22 mA (typ.)

Power boot up: 3 mA (typ.)
Powering

Use VDD_PADS (Pin 16) or VBAT (Pin 17) to power the module.
Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AIO2</td>
<td>Input</td>
<td>Analogue Input</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AIO1</td>
<td>Input</td>
<td>Analogue Input</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AIO0</td>
<td>Input</td>
<td>Analogue Input</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>IO0</td>
<td>I/O</td>
<td>UART TX</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>IO1</td>
<td>I/O</td>
<td>UART RX</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>IO3</td>
<td>I/O</td>
<td>Programmable Input Output (PIO)</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>IO4</td>
<td>I/O</td>
<td>Programmable Input Output (PIO)</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12*</td>
<td>IO5 / SPI</td>
<td>I/O</td>
<td>Programmable Input Output (PIO) / DEBUG_CLK</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>VDD_PADS</td>
<td>Power</td>
<td>Positive supply for all digital and analogue I/O Pins</td>
<td>1V2</td>
<td>3V3</td>
<td>3V6</td>
</tr>
<tr>
<td>17</td>
<td>VBAT</td>
<td>Power</td>
<td>Module battery power supply DC</td>
<td>1V8</td>
<td>3V3</td>
<td>3V6</td>
</tr>
<tr>
<td>18*</td>
<td>IO6 / SPI</td>
<td>I/O</td>
<td>Programmable Input Output (PIO) / DEBUG_CS#</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19*</td>
<td>IO7 / SPI</td>
<td>I/O</td>
<td>Programmable Input Output (PIO) / DEBUG_MOSI</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20*</td>
<td>IO8 / SPI</td>
<td>I/O</td>
<td>Programmable Input Output (PIO) / DEBUG_MISO</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>IO9</td>
<td>I/O</td>
<td>Programmable Input Output (PIO)</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>IO10 / iO_C</td>
<td>I/O</td>
<td>Programmable Input Output (PIO) / SDA</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>IO11 / iO_C</td>
<td>I/O</td>
<td>Programmable Input Output (PIO) / SCL</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SPIPION</td>
<td>Input</td>
<td>High to enable the SPI debug interface, Low to enable PIO</td>
<td>VDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>WAKE</td>
<td>Input</td>
<td>Toggle to wake from Dormant Mode</td>
<td>VDD_BAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>GND</td>
<td>Ground</td>
<td>Common Ground</td>
<td>0V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* for SPI at P12, P18, P19 and P20 set P25 to High.

* for PIO at P12, P18, P19 and P20 set P25 to Low.
Module Block Diagram

- IPEX Connector
- Filter
- E²PROM 512 kB
- BT_RF
- Qualcomm Chipset
- XTAL 32 kHz
- XTAL 16 MHz
- VBAT / PADS
- PWM
- AIO
- SPI_Debug
- UART
- IO
- PIO
LM930 Bluetooth® low energy Module (with IPEX Connector)
Standalone (With Embedded Bluetooth® v4.1 Stack)

Physical Dimensions

Top View

Front View

Side View
LM930 Bluetooth® low energy Module (with IPEX Connector)
Standalone (With Embedded Bluetooth® v4.1 Stack)

PCB Footprint

IPEX Connector
PCB Drying Conditions

Please refer below to the conditions for drying before the solder reflow processes. (Extracted from IPC/JEDEC J-STD-033B.1)

Soldering Reflow Chart

<table>
<thead>
<tr>
<th>Preheat zone slope</th>
<th>Immersion time 150 to 180°C</th>
<th>Refluxing time 220°C</th>
<th>Maximum Temperature</th>
<th>Cooling zone slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.50</td>
<td>80.00</td>
<td>-56.00</td>
<td>72.50</td>
<td>-2.75</td>
</tr>
<tr>
<td>2.50</td>
<td>76.00</td>
<td>-66.00</td>
<td>68.00</td>
<td>-2.53</td>
</tr>
<tr>
<td>2.50</td>
<td>75.00</td>
<td>-62.50</td>
<td>63.50</td>
<td>-2.36</td>
</tr>
<tr>
<td>2.70</td>
<td>77.00</td>
<td>-57.50</td>
<td>72.50</td>
<td>-2.57</td>
</tr>
</tbody>
</table>
LM930 Bluetooth® low energy Module (with IPEX Connector)
Standalone (With Embedded Bluetooth® v4.1 Stack)

Tape and Reel Packaging

Tape Dimensions

Reel Dimensions

Notes
- Carton Dimensions (L x W x H): 360mm x 290mm x 370mm

Quantities
- 1250 modules per Tape
- 4 Boxes per Carton
- 5000 modules per Carton
Tray Packaging

Tray Dimensions

Notes
- Anti-Static PS Tray, Black.
- Electrical Resistance: 1 MΩ < R < 100 MΩ.
- Thickness: T = 0.8 mm
- Carton Dimensions (L x W x H): 360mm x 325mm x 160mm

Quantities
- 60 modules per Tray
- 600 modules per Box
- 4 Boxes per Carton
- 2400 modules per Carton
Packaging for Tape & Reel / Tray

The trays/reels are stacked and inserted into an anti-static vacuum bag with a Humidity Indicator Card. On the outside of the bag are labels for Anti-Static, Model Name and Moisture Sensitivity Levels.

Reels are placed within a vacuum bag.

Trays are stacked up with an empty tray on the top.

The vacuum bag is placed inside the box and a model name label affixed on the front-side of each box.

Each carton contains 4 boxes.
Datasheet Version Notes

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.0</td>
<td>13 MAR 2018</td>
<td>Added version notes to datasheet.</td>
</tr>
<tr>
<td>v1.1</td>
<td>13 MAR 2018</td>
<td>MSL Description text improvement in the PCB Drying Conditions section.</td>
</tr>
<tr>
<td>v1.2</td>
<td>04 JUL 2018</td>
<td>MSL Description text improvement in the PCB Drying Conditions section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packing Information addition.</td>
</tr>
</tbody>
</table>
LM930 Packaging Options

- **930-0634**
 - **LM930 Module**
 - MOD SMT PROG BT4.1 SMART uE, Fw.3.16v, 9.dBm PCS

- **930-0635**
 - **LM930 Module**
 - MOD SMT PROG BT4.1 SMART FW uE v3.11 9.dBm IPEX TRAY

- **930-0633**
 - **LM930 Module**
 - MOD SMT PROG BT4.1 SMART FW uE v3.11 9.dBm IPEX T&R